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Path-complete Lyapunov Techniques1 are a family of methods that combine Automata-
Theoretic tools with algebraic formulas in order to derive ad hoc criteria for the con-
trol of complex systems. These criteria are typically solved with Convex Optimization
solvers. They initially appeared in the framework of switched systems, which are dy-
namical systems for which the state dynamics varies between different operating modes.
They take the form

x(t +1) = fσ(t)(x(t)) (1)

where the state x(t) evolves in Rn. The mode σ(t) of the system at time t takes its value
in a set {1, . . . ,M} for some integer M, and each mode of the system is described by a
continuous map fi(x) : Rn→ Rn.

When the functions fi are linear functions, we say that the system is a linear switched
system. The stability problem is reputedly very hard, even in the restricted case of lin-
ear functions (see e.g. [14, Section 2.2]). In this case, one can easily obtain a sufficient
condition for stability, through the existence of a common quadratic Lyapunov function
(see e.g. [18, Section II-A]). However, such a Lyapunov function may not exist, even
when the system is asymptotically stable (see e.g. [17, 18]). Less conservative parame-
terizations of candidate Lyapunov functions have been proposed, at the cost of greater
computational effort (e.g. for linear switching systems, [19] uses sum-of-squares poly-
nomials, [12] uses max-of-quadratics Lyapunov functions, and [4] uses polytopic Lya-
punov functions). Multiple Lyapunov functions (see [7, 21, 13]) arise as an alternative to
common Lyapunov functions. In the case of linear systems, the multiple quadratic Lya-
punov functions such as those introduced in [6, 8, 16, 9] hold special interest as check-
ing for their existence boils down to solving a set of LMIs. The general framework of
Path-Complete Lyapunov functions was recently introduced in [1, 15] in this context,
for analyzing and unifying these approaches.

In this talk, we first present these criteria guaranteeing that the system (1) is stable
under arbitrary switching, i.e. where the function σ(·) is not constrained, and one is
interested in the worst-case stability. We then show how this very natural idea can be
leveraged for much more general purposes: we present recent works were the same
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1 Path-complete techniques are implemented in the JSR toolbox [22].



idea has been applied to more general systems than the ones described above [20], or
for proving different properties than stability [10].

These techniques give rise to many natural questions: First, they essentially provide
algebraic criteria, that is, equations and inequations, that can be solved numerically in
order to (hopefully) conclude stability, if a solution is found. But what do they mean in
terms of control systems? Do they have a geometric interpretation in the state space?
Second, among the different criteria in this framework, which one should an engineer
pick in practice? Do these criteria compare with each other (in terms of conservative-
ness)? How to algorithmically choose the good criterion, when one is given a particular
problem? While recent progress has been done to provide a geometric interpretation of
these criteria [3], several problems remain open, like the one of comparing two given
path-complete criteria [2].

Finally, we draw connections with other recent works in Control and Computer
Science, which bear similarities with path-complete techniques, in safety analysis of
computer programs [5], or in connection with tropical Kraus maps [11].
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Fig. 1. Graphical illustration of the level set of a path-complete Lyapunov function. We will show
in the talk that these level sets can always be expressed as unions of intersections of Ellipsoids.
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complete graphs and common lyapunov functions. In Proceedings of the 20th International
Conference on Hybrid Systems: Computation and Control, pages 81–90. ACM, 2017.

4. Nikolaos Athanasopoulos and Mircea Lazar. Alternative stability conditions for switched
discrete time linear systems. In IFAC World Congress, pages 6007–6012, 2014.



5. Gogul Balakrishnan, Sriram Sankaranarayanan, Franjo Ivančić, and Aarti Gupta. Refining
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