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Motivations and Goals

Motivatios

Project on validation (testing, runtime verification, formal methods)
of IoT applications developed in Node.js ”Full Stack Quality of
Javascript of Anything” funded by our University

Node.js is a JavaScript runtime system built on Chrome’s V8
JavaScript engine.

Node.js uses an event-driven, non-blocking I/O model that makes it
lightweight and efficient

Node.js is becoming a standard for IoT applications (for both server-
and client-side software)
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Motivations and Goals

Node.js

var result = db.query(”SELECT...”); // use result

VS
db.query(”SELECT...”, function (result) // use result );
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Motivations and Goals

Main Features of Node.js

Built on top of Javascript

Asynchronous calls to avoid synchronization primitive such as locks

Priority queues to model different types of events (input/output,
delayed calls, etc);

Continuation-style programming: callbacks with highest priority

Closures to handle variables used in callbacks but declared in
outermost functions
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Motivations and Goals

Emitter

var EventEmitter = require(’events’);

var Emitter = new EventEmitter();

var msg = function msg() { console.log(’ok’); }

Emitter.on(’evt1’, msg);

Emitter.emit(’evt1’);

while (true);

G. Delzanno et al. 8 / 48



Motivations and Goals

Emitter + Setimmediate

var EventEmitter = require(’events’);

var Emitter = new EventEmitter();

var msg = function msg() { console.log(’ok’); }

Emitter.on(’evt1’, function () { setImmediate(msg); });

Emitter.emit(’evt1’);

while (true);
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Motivations and Goals

Closures and callbacks

function test(){

var d = 5;

var foo = function(){ d = 10; }

process.nextTick(foo);

setImmediate(() => { console.log(d) })

}

test();
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Motivations and Goals

Informal semantics

test is called synchronously

foo is delayed till the end of main (closure is stored in the heap)

console.log(d) is postponed to the next tick (closure stored in the
heap)

when the main terminates foo updates d

in the next loop tick console.log prints the updated value 10
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Motivations and Goals

For Devs Only?

Dev documentation is not clear at all

Program semantics can be very hard to understand

Non-determinism due to possible reorderings of events and delay of
asynchronous operations

Program transformations and design patterns are often used to
simplify Node.js programs

Formal semantics/reasoning to increase software quality!
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Motivations and Goals

Our Proposal

An Abstract Machine to describe the semantics of Asynchronous
Programs with Priority Queues and Closures inspired to Node.js

Built in two steps:

Host language with callback definitions and closures
Abstract machine (parametric on the pperational semantics of the host
language) to describe event loop, continuations and callbacks with
priorities

Closures, the bridge between the two layers, are modeled via a shared
heap

Meta-interpreter built in Prolog to reason about all possible program
executions (non determinism due to event triggering and termination
of asynchronous operations)
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Abstract Machine for the Host Language

Host Language

We introduce a host (imperative) language L defined as follows

F is a set of function names.

Var is a set of variables (it also contains function names in F )

Callback is the set of (anonymous) callback definitions of the form
λ~x .s, where ~x ∈ Vark are formal parameters and s is a list of
statements

Val contains primitive values and closures
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Abstract Machine for the Host Language

Programs

Let B be a finite sequence of instructions in Stmts∗

let x = e in B where x is a local variable, e an expression denoting a
primitive value,

let f1 = λ~y1.P1, . . . , fk = λ~yk .Pk in B where P1, . . . ,Pk are program
expressions, they may contain let declarations to model nested
callback declarations

Example
P = let f = (let (cb = λx . obs(x)) in call(read , cb) · f ) in f ()
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Abstract Machine for the Host Language

(Lightweight) Instruction Set

obs(e) to observe a certain event (a value)

store(x , e) to store a value (the evaluation of e) in the global or local
variable x . We use the expression any to denote a value non
deterministically selected from the set of values.

f (~e) to synchronously invoke a callback f with the vector of
parameters ~e. Actual parameters are global or local variables.
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Abstract Machine for the Host Language

Semantic Domains

Env = [Vars → Loc]

Closures = Env × Callback

Val contains primitive values and closures

Heap = [Loc → Val ]

Frames = Env × Stmts∗
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Abstract Machine for the Host Language

Configurations

〈G ,H, S〉, where

G ∈ Env ,

H is the global heap,

S ∈ Frame∗, i.e., S = 〈`1,S1〉 . . . 〈`n,Sn〉 for i : 1, . . . , n and
represents the call stack.

In a pair 〈`,w〉, ` is the local environment and w is the corresponding
program to be executed.
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Abstract Machine for the Host Language

Let Declarations

`′ = `[x/l ], lH(e) = v , H ′ = H[l/v ], l 6∈ dom(H)

〈G ,H, 〈`, let x = e in B〉 · S〉 →L 〈G ,H ′, 〈`′,B〉 · S〉

`H combines local environment ` and heap H
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Abstract Machine for the Host Language

Let Declarations

`′ = `[f1/l1, . . . , fk/lk ], H ′ = H[l1/〈`, λ~x1.P1〉, . . . , lk/〈`, λ~xk .Pk〉]
li 6∈ dom(H), li 6= lj , for i , j : 1, . . . , k , i 6= j

〈G ,H, 〈`, let f1 = λ~x1.P1, . . . , fk = λ~xk .Pk in B〉 · S〉 →L 〈G ,H ′, 〈`′,B〉 · S〉

We adopt static binding as in Javascript
We use locations to access variables declared in outermost scopes
(an environment is an ordered lists of substitutions)
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Abstract Machine for the Host Language

Observations

〈G ,H, 〈`, obs(e) · B〉 · S〉 →
̂̀
H (e)
L 〈G ,H, 〈`,B〉 · S〉
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Abstract Machine for the Host Language

Store on Global Variables

x 6∈ dom(`) G · `H(e) = w 6= λ~y .e

〈G ,H, 〈`, store(x , e) · B〉 · S〉 →L 〈G [x/w ],H, 〈`,B〉 · S〉
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Abstract Machine for the Host Language

Store on Local Variables

x ∈ dom(`) `H(e) = w 6= λ~y .e `(x) = l

〈G ,H, 〈`, store(x , e) · B〉 · S〉 →L 〈G ,H[l/w ], 〈`,B〉 · S〉
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Abstract Machine for the Host Language

Synchronous call

`H(f ) = 〈`′, λ~y .u〉, G · (`H) · (`′H)(~v) = ~v ′, H ′ = H[~l/~v ′], `′′ = `[~y/~l ],

for ~l = l1, . . . , lk , li 6∈ dom(H), li 6= lj , for i , j : 1, . . . , k, i 6= j

〈G ,H, 〈`, f (~v) · B〉 · S〉 →L 〈G ,H ′, 〈`′′, u〉 · 〈`,B〉 · S〉
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Abstract Machine for the Host Language

Absorbtion

〈G ,H, 〈`, ε〉 · S〉 →L 〈G ,H,S〉
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Abstract Machine for the Event Loop
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Abstract Machine for the Event Loop

Additional Instructions

reg(e, u): registers callbacks in the word (list) w ∈ F ∗ for event e, we
use a list since we the callbacks must be processed in order.

call(op, cb): invokes an asynchronous operation op and registers the
callback cb to be executed upon its termination. We assume here
that the operation generates a vector of input values that are passed,
upon termination of op, to the callback cb.

nexttick(f , ~v): enqueues the call to f with parameters ~v in the
nextTick queue.

setimmediate(f , ~v): postpones the call to function f with parameters
~v to the next tick of the event loop.

trigger(e, ~v): generates event e ∈ Eventsi (pushing callbacks in the
poll queue) with actual parameters ~v .

unreg(e,P): unregisters all callbacks in the set P ∈ P(F ) for event e,
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~v to the next tick of the event loop.

trigger(e, ~v): generates event e ∈ Eventsi (pushing callbacks in the
poll queue) with actual parameters ~v .

unreg(e,P): unregisters all callbacks in the set P ∈ P(F ) for event e,
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Abstract Machine for the Event Loop

Additional Notation

We now introduce an abstract machine to describes the semantics of the
“event loop”’

Events = Eventsi ∪ Eventse is a finite set of (internal/external) event
labels

CallF is the set of callback calls {f (~v)|f ∈ F , ~v ∈ Valk , k ≥ 0}.
CallA is the set of asynchronous calls {call(a, cb)|a ∈ A, cb ∈ F},
where A is a set of labels.
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Abstract Machine for the Event Loop

Event Loop Configurations

A configuration is a tuple 〈G ,H,E ,S ,C ,Q,P,R〉, where

G ∈ Env ,

H ∈ Heap,

E ∈ Listener ,

S ∈ Frame∗,

C ,Q,P ∈ (Env × CallF )∗,

R ∈ (Env × CallA)⊗.
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Abstract Machine for the Event Loop

Event Loop Configurations

A configuration is a tuple 〈G ,H,E ,S ,C ,Q,P,R〉, . . .
C is the (nexttick) queue of pending callback invocations generated
by nexttick .

Q is the (poll) queue of pending callback invocations generated by
trigger and by external events.

P is the (setimmediate) queue of pending callback invocations
generated by setimmediate.

R models the thread pool executing asynchronous operations

Local environments are used to evaluate variables defined in the body
of a callback at the moment of registration, synchronous or
asynchronous invocation.
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Abstract Machine for the Event Loop

Transitions in the Host Language

〈G ,H,S〉 →α
L 〈G ′,H ′, S ′〉

〈G ,H,E , S ,C ,Q,P,R〉 →α 〈G ′,H ′,E , S ′,C ,Q,P,R〉
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Abstract Machine for the Event Loop

Callback Registration

E ′ = E [evt/(E (evt) · 〈`, u〉)]

〈G ,H,E , 〈`, reg(evt, u) · w〉 · S ,C ,Q,P,R〉 → 〈G ,H,E ′, 〈`,w〉 · S ,C ,Q,P,R〉
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Abstract Machine for the Event Loop

Registration Cancelation

E ′ = E [evt/(E (evt)	 u)]

〈G ,H,E , 〈`, unreg(evt, u) · w〉 · S ,C ,Q,P,R〉 → 〈G ,H,E ′, 〈`,w〉 · S ,C ,Q,P,R〉
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Abstract Machine for the Event Loop

Event Triggering

evt ∈ Eventsi E (evt) = 〈`1, u1〉 . . . 〈`m, um〉 ui = pi1 · . . . · piki for i : 1, . . . ,m
r = 〈`1, p11(~v)〉 · . . . · 〈`1, p1k1(~v)〉 . . . 〈`m, pm1 (~v)〉 · . . . · 〈`m, pmkm(~v)〉 ~v ∈ Valk

〈G ,H,E , 〈`, trigger(evt, ~v) · w〉 · S ,C ,Q,P,R〉 → 〈G ,H,E , 〈`,w〉 · S ,C ,Q · r ,P,R〉
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Abstract Machine for the Event Loop

Asynchronous Call

R ′ = R ⊕ {〈`, call(a, cb)〉}
〈G ,H,E , 〈`, call(a, cb) · w〉 · S ,C ,Q,P,R〉 → 〈G ,H,E , 〈`,w〉 · S ,C ,Q,P,R ′〉
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Abstract Machine for the Event Loop

Termination of Async. Call

u = 〈`, cb(~v)〉 ~v ∈ Valk R ′ = R \ {〈`, call(a, cb)〉}
〈G ,H,E ,S ,C ,Q,P,R〉 → 〈G ,H,E ,S ,C ,Q · u,P,R ′〉
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Abstract Machine for the Event Loop

External Event Triggering

evt ∈ Eventse E (evt) = 〈`1, u1〉 . . . 〈`m, um〉 ui = pi1 · . . . · piki for i : 1, . . . ,m
r = 〈`1, p11(~v)〉 · . . . · 〈`1, p1k1(~v)〉 . . . 〈`m, pm1 (~v)〉 · . . . · 〈`m, pmkm(~v)〉 ~v ∈ Valk

〈G ,H,E ,S ,C ,Q,P,R〉 → 〈G ,H,E ,S ,C ,Q · r ,P,R〉
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Abstract Machine for the Event Loop

Nexttick

G · `H(~v) = ~v ′

〈G ,H,E , 〈`, nextT (f , ~v) · w〉 · S ,C ,Q,P,R〉 → 〈G ,H,E , 〈`,w〉 · S ,C · 〈`, f (~v ′)〉,Q,P,R〉
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Abstract Machine for the Event Loop

Setimmediate

G · `H(~v) = ~v ′

〈G ,H,E , 〈`, setI (f , ~v) · w〉 · S ,C ,Q,P,R〉 → 〈G ,H,E , 〈`,w〉 · S ,C ,Q,P · 〈`, f (~v ′)〉,R〉
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Abstract Machine for the Event Loop

Selection from Nexttick Queue

`H(p) = 〈`′, λ~y .s〉, G · (`H) · (`′H)(~v) = ~v ′, H ′ = H[~l/~v ′], `′′ = `[~y/~l ],

for ~l = l1, . . . , lk , li 6∈ dom(H), li 6= lj , for i , j : 1, . . . , k, i 6= j

〈G ,H,E ,⊥, 〈`, p(~v)〉 · C ,Q,P,R〉 → 〈G ,H ′,E , 〈`′, s〉,C ,Q,P,R〉
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Abstract Machine for the Event Loop

Selection from Poll Queue

`H(f ) = 〈`′, λ~y .s〉, G · (`H) · (`′H)(~v) = ~v ′, H ′ = H[~l/~v ′], `′′ = `[~y/~l ],

for ~l = l1, . . . , lk , li 6∈ dom(H), li 6= lj , for i , j : 1, . . . , k , i 6= j

〈G ,H,E ,⊥, ε, p(~v) · Q,P,R〉 → 〈G ,H ′,E , 〈`′, s〉, ε,Q,P,R〉
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Abstract Machine for the Event Loop

Selection from Pending Queue

〈G ,H,E ,⊥, ε, ε,P,R〉 → 〈G ,H,E ,⊥, ε,P, ε,R〉
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Formal Reasoning: An Example

Plan
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2 Abstract Machine for the Host Language

3 Abstract Machine for the Event Loop

4 Formal Reasoning: An Example

G. Delzanno et al. 44 / 48



Formal Reasoning: An Example

Simple Node Example

var fs = require(’fs’);

fs.readFile(’input.txt’, function cb (data) {

console.log(data.toString());

});

console.log(’Program Ended’);
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Formal Reasoning: An Example

S = call(readFile, cb) · log(...) Q = ε R = ∅
↓

S = log(...) Q = ε R = {{cb}}
↙ ↘

S = log(...) Q = 〈cb, ~v〉 R = ∅
S = ⊥ Q = ε R = {{cb}}

↘ ↙
S = ⊥ Q = 〈cb, ~v〉 R = ∅

↓
S = log(...) Q = ε R = ∅

↓
S = ⊥ Q = ε R = ∅

cb = λdata.log(data)
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Formal Reasoning: An Example

Conclusions

Event-driven programs have a non-deterministic behavior: difficult to
program and to verify

The abstract machine can be used to understand the behavior, apply
analysis and verification techniques

Starting from this model: Js promises, bounded model checking,
decidable fragments (?)

Tools like Loupe2 can be written

2latentflip.com/loupe/
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