
IBM Research

© 2010 IBM Corporation

How do we know that our system is
correct?

Hana Chockler
Department of Informatics

King’s College, London

© 2010 IBM Corporation2

How to verify computerized systems?

Bug hunting Certification of
correctness

© 2010 IBM Corporation3

Simulation-based verification/
Testing

Formal methods
(Model checking)

checking the
behavior of a system
by executing it many

times formally and
automatically
proving the

correctness of a
system according to

a predefined
specification

How to verify
computerized systems?

Bug hunting
Certification of

correctness

§ This process is sampling
§ The sampling should be as

exhaustive as possible
§ Coverage metrics are widely

used as heuristic measures of
exhaustiveness of sampling

© 2010 IBM Corporation4

100000000011101011011011110111

Simulation-based Verification
Execute the system in parallel with a

reference model…

…with respect to some input sequences.

Testing

Execute the program on a test suite and
inspect manually or (semi-)automatically

© 2010 IBM Corporation5

Simulation-based Verification and Testing

Observations:
§ The simulation/testing process is sampling
§ The sampling should be as exhaustive as possible
§ The process can only find bugs – there is no way to

guarantee that the system under test is correct

How exhaustive is the sampling?
Did we check all locations of
most complex functionality?

Various coverage metrics are
widely used as heuristic

measures of exhaustiveness
of verification

“To know that we know what we know, and that we
do not know what we do not know, that is true
knowledge .“ Confucius

© 2010 IBM Corporation6

Is the system correct?
Formal Verification (Model Checking)

A mathematical model of the
system M (an FSM):

A formal specification φ

Does M satisfy φ?

no

counter example

yes

the system
is correct!

Do we
really
know
this?

© 2010 IBM Corporation7

Claim: Verification is only as good as the specification

Best possible specifications
generated automatically

vacuity coverage query
checking

causality
and

responsibility

filtering
redundant
information

learning

© 2010 IBM Corporation8

Claim: Verification is only as good as the specification

Best possible
specifications generated

automatically

vacuity coverage query
checking

causality
and

responsibility

filtering
redundant
information

learning

synthesis

Best possible systems
synthesized
automatically

© 2010 IBM Corporation9

Pass in Model Checking:
Is it really correct?

Correctness of the “pass” result depends
on correctness and exhaustiveness of the specification

Did I check what
I wanted to

check?

Did I check
everything I

wanted to
check?

Model checking ≠ sampling
The whole reachable state space is visited

Do we know that the system is correct
if model checking passes?

© 2010 IBM Corporation10

Suspecting a positive answer [IBM, Intel]

j = always (req -> eventually grant)

T

Does M
satisfy j?

Yes, but in a
non-

interesting
way!

req

grant

grant

Does K
satisfy j?

Yes, but
maybe in an
unexpected

way!

vacuity coverage

Printer that
doesn’t print

Printer that
prints everything

twice

system K:system M:

© 2010 IBM Corporation11

The story of vacuity

Beer, Ben-David, Eisner, Rodeh
The first definition of vacuity

1997

Kupferman, Vardi
Formal definitions and complexity1999

timeline

© 2010 IBM Corporation12

Vacuity – the main idea
Vacuous satisfaction of φ in M means
that some part of φ is irrelevant in M

T

Printer that
doesn’t print

system M:

j = always (req -> eventually grant)

Means that φ can
be strengthened
without falsifying

it in M

j‘ = always (req -> eventually false)

strengthening

Another way to see it: can we
introduce mutations (changes) to j

without falsifying it in M?

© 2010 IBM Corporation13

Vacuity – the main idea
Vacuous satisfaction of φ in M means
that some part of φ is irrelevant in M

T

Printer that
doesn’t print

system M:

j = always (req -> eventually grant)

Means that φ can
be strengthened
without falsifying

it in M

mutant j‘

Non-affecting
mutations can point to

problems

mutation

Number of mutations
depends on the size of j

and the types of
mutations

© 2010 IBM Corporation14

The story of vacuity

Beer, Ben-David, Eisner, Rodeh
The first definition of vacuity

1997

Kupferman, Vardi
Formal definitions and complexity1999

Lots and lots of papers, studying vacuity for different
logics, different languages, with different definitions …

Ben-David, Fisman, Ruah:
Vacuity for regular expressions

2007
Chockler, Gurfinkel, Strichman
The Strongest Passing Formula

2008

timeline
Vacuity is a part of all commercial model-checking tools

(IBM, Intel, Cadence and others)

© 2010 IBM Corporation15

What is the output of vacuity check?
Vacuous satisfaction of φ in M means
that some part of φ is irrelevant in M

What would we like to
get?

Standard vacuity check outputs the parts of j
that can be replaced by ?

We would like to get
stronger specifications

generated
automatically

Chockler, Gurfinkel, Strichman
The Strongest Passing Formula

2008 The first step
in this direction

j = always (a OR b OR c) vacuity
a is redundant:

j’ = always (b OR c) holds

© 2010 IBM Corporation16

Suspecting a positive answer [IBM, Intel]

j = always (req -> eventually grant)

T

Does M
satisfy j?

Yes, but in a
non-
interesting
way!

req

grant

grant

Does K
satisfy j?

Yes, but
maybe in an
unexpected

way!

vacuity coverage

Printer that
doesn’t print

Printer that
prints everything

twice

system K:system M:

© 2010 IBM Corporation17

The story of coverage

Hoskote, Ho, Kam, Zhao
The first definition of coverage

for model checking

1999

Chockler, Kupferman
Formal definitions and algorithms2001

timeline

© 2010 IBM Corporation18

Coverage

In model checking: an element is covered
n

The system with the element modified (mutated) no
longer satisfies the specification

The most general definition:

§ elements are small (atomic) -
mutations are small changes
§if a mutant system still satisfies the
specification è we did not check this
particular corner of the system

© 2010 IBM Corporation19

req

grant

grant
Printer that

prints everything
twice

system K:

Coverage

j = always (req -> eventually grant)

mutation

req

grant

system K’:

A non-covered mutation represents a “corner” of the
system that was not verified
(and hence may contain bugs)

© 2010 IBM Corporation20

The story of coverage

Hoskote, Ho, Kam, Zhao
The first definition of coverage

for model checking

1999

Chockler, Kupferman
Formal definitions and complexity2001

Some papers proposing new definitions and algorithms

timeline

© 2010 IBM Corporation21

Different types of mutations

· Flipping the value of one output signal in one state (Intel)
· Same with control signals
· Freeing a signal (turning it to an input)
· VHDL code mutations (erasing or changing a line)
· Removing behaviors (by removing states or otherwise)
· Changing one net in the net-list

mutations are small changes –
either in the signals in the

representation inside the tool,
or in the code written by the

designer

© 2010 IBM Corporation22

The story of coverage

Hoskote, Ho, Kam, Zhao
The first definition of coverage

for model checking

1999

Chockler, Kupferman
Formal definitions and complexity2001

Some papers proposing new definitions and algorithms

timeline

Complexity
of computing

coverage

Manual effort
in examining
the results

© 2010 IBM Corporation23

Useful observation – all
mutant systems are similar!

Problem: how to compute coverage efficiently?

· Symbolic algorithms: represent all possible mutants together by
adding a small number of symbolic variables

· Improving average complexity: consider possible mutations as
unknown values and attempt to compute as much as possible without
assigning them

· Reusing the results of verification of the original system:
o Interpolation-based coverage computation: save the proof and

reuse it
o ic3–based coverage computation: save the high-level proof or

symbolic partial counterexample and re-use it

Model-checking each mutant system separately is infeasible

This leads to feasible and efficient algorithms:

Was implemented and actually works at IBM

© 2010 IBM Corporation24

Reusing the results of verification

· Main idea: the same proof works for most mutant systems
· If the proof does not work, it can be “patched” to work –

cheaper than re-verification

Proof

DUV

mutation

Mutant DUV

Patched
Proof

mutation

© 2010 IBM Corporation25

A byproduct – efficient regression
verification methodology

· Proofs and counterexamples are general enough to work for
many mutant systems – in particular, for a new version

· If they don’t work, they can be “patched” to work –
cheaper than re-verification

DUV V1.0

New version

DUV V2.0

small patch
Proof

---------…

Ge
ne

ra
liz

ed
co

un
te

re
xa

m
pl

e Patched
Proof

…

Pa
tc

he
d

co
un

te
re

xa
m

pl
e

© 2010 IBM Corporation26

The story of coverage

Hoskote, Ho, Kam, Zhao
The first definition of coverage

for model checking

1999

Chockler, Kupferman
Formal definitions and complexity2001

Some papers proposing new definitions and algorithms

Complexity
of computing
coverage –

Solved!

Manual effort
in examining
the results

© 2010 IBM Corporation27

Results of the feasibility check – done at IBM
Mutations of a hardware design

There exist many non-covered mutations

· There are hundreds of thousands of
automatically generated mutations

· Not all of them are interesting
· Those that are interesting should be

examined by the verification engineer
and/or the designer

· Not all non-covered mutations point to a
bug – but some do

Even in a thoroughly
verified design!

unhappy designer

© 2010 IBM Corporation28

How to minimize the manual effort
in checking coverage results?

· Based on the structure of
the design or on designer’s
intent

· Does it save power?
· Is it likely?
· Refinement of coverage

Reduce the number of mutations Automatic analysis of results

Check only
interesting
mutations!

How to define
“interesting”?

· Identify non-covered areas
of the design

· Construct non-covered
traces

· Suggest properties that
have better coverage

Best possible specifications
generated automatically

The holy grail of sanity checks:

© 2010 IBM Corporation29

The story of coverage

Hoskote, Ho, Kam, Zhao
The first definition of coverage

for model checking

1999

Chockler, Kupferman
Formal definitions and complexity2001

Some papers proposing new definitions and algorithms

Complexity
of computing
coverage –

Solved!

Manual effort
in examining
the results –
First steps

© 2010 IBM Corporation30

Problem: some specifications almost always have low coverage!

a good system

Example: φ = “f is computed at least twice”
(for fault tolerance)

f f
f

mutants still
satisfy φ!

f
f
f
f

f
f
f
fa bad system

need more
information

both systems have
low coverage

Do we need a metric that refines coverage?

© 2010 IBM Corporation31

a good system

Example: φ = “f is computed at least twice”
(for fault tolerance)

f f
f

f
f
f
f

f
f
f
f

a bad system

Replacing coverage with causality and responsibility
(from AI):

responsibility
of each f for

φ is 1/2

responsibilit
y of each f
for φ is 1/7

g

responsibility
of g for φ is 0

And element is covered if its responsibility is 1.

© 2010 IBM Corporation32

Side note:
causality and responsibility are useful in general

Explaining counterexamples
using causality
(putting red dots):

4n

0n
6n

1n

3 n

2n
5n

Symbolic trajectory evaluation
(STE) refinement:

j =

for formal verification and other things

Part of the IBM formal
verification product

Implemented in Intel

G((¬START ∧ ¬STATUS VALID ∧ END) → X[¬START U (STATUS VALID ∧
READY)]).

© 2010 IBM Corporation33

Best possible systems
synthesized
automatically

A mathematical model of
the system M A formal specification φ

Does M satisfy φ?

no

counter example

yes

the system
is correct!

requirements

Double
work!

© 2010 IBM Corporation34

What if we can just generate a correct system
automatically from the specification?

Best possible systems
synthesized
automatically

© 2010 IBM Corporation35

What if we can just generate a correct system
automatically from the specification?

Synthesis

Best possible systems
synthesized
automatically

A mathematical model of
the system M A formal specification φ

Does M satisfy φ?

no

counter example

yes

the system
is correct!

requirements

© 2010 IBM Corporation36

What if we can just generate a correct system
automatically from the specification?

Synthesis

Best possible systems
synthesized
automatically

A mathematical model of
the system M A formal specification

φ

Does M satisfy φ?
the system is
correct by

construction!

requirements

Automatic synthesis

So the problem
is solved? Can
we all go home

now?

Not so fast…

© 2010 IBM Corporation37

Suspecting a positive answer [IBM, Intel]

j = always (req -> eventually grant)

T

Does M
satisfy j?

Yes, but in a
non-
interesting
way!

req

grant

grant

Does K
satisfy j?

Yes, but
maybe in an
unexpected

way!

vacuity coverage

Printer that
doesn’t print

Printer that
prints everything

twice

system K:system M:

© 2010 IBM Corporation38

T

vacuity

Printer that
doesn’t print

(not connected)

What happens
when the specification is incomplete?

We need to
print some

stuff

Automatic synthesis

𝛗 = always (req->
eventually grant)

Best possible systems
synthesized
automatically

Best possible specifications
generated automatically

© 2010 IBM Corporation39

Synthesizing non-vacuous systems [BCES17]

· Given a specification 𝛗, strengthen it so that it does not allow
vacuous satisfaction.
o “There must exist an interesting behaviour”.

· This results in a formula with existential quantifiers.
· Synthesize the resulting formula.
· Improve the system iteratively until there are many interesting

behaviours.

Vacuity is a non-interesting pass
of a specification in the system.

But we don’t have a system yet! What do we do?

© 2010 IBM Corporation40

Synthesizing non-vacuous systems [BCES17]
𝛗 = always (req-> eventually grant)

Must allow any behaviour of inputs (req)
(that is, the printer is connected)

𝜓 = always (eventually(grant))
What about a printer that prints regardless of requests?

Must be at least one execution where eventually it stops printing
¬𝜓 = ∃(eventually (always(!grant)))

req!req grant!grant
req

!req

Print ↔ a
printing
request
arrives

© 2010 IBM Corporation41

So can we switch to synthesis
and stop designing systems?

· Synthesis is double-exponential in the size of the specification
· We only know how to do non-vacuous bounded synthesis
· Nobody knows how to synthesize software
· We don’t know how to generate the best possible specifications

automatically

Not yet…

But hopefully in the future

© 2010 IBM Corporation42

φφ’M

The main goal of sanity checks:

Best possible specifications
generated automatically

All systems

Strengthening and
tightening

systems satisfying φ

systems satisfying
user’s intent

A specification should
describe desired

functionality, not the
actual implementation

M design

© 2010 IBM Corporation43

Questions?

