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About

Basics about mean-payoff games

e Algorithms & Complexity

e Strategy complexity — Memory
Focus

e Equivalent game forms

e Techniques for memoryless proofs
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Switching policy to get average power (1,1) ?
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Mean-payoff value = limit-average of the

visited weights
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Switching policy

» Infinite memory: (1,1)  vanishing frequency in q,

n—1

N S
MP(qoq1...) = lim —- Zwelghtk(qi)

n—oo M,
1=0

A . 1<k<d
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Mean-payoff is prefix-independent
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Switching policy

e Infinite memory: (1,1) for liminf & (2,2) for limsup
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e Turn-based

¢ Infinite duration
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e Turn-based

¢ Infinite duration

Play: a, d, a, b, e, f,g,d, a,c, ...
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Player 1: o: Q" Qo — Q
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Two-player games

o e Q Player 1 (maximizer)

Player 2 (minimizer)

‘\ 0

e Turn-based

¢ Infinite duration

Strategies = recipe to extend the play prefix

Player 1: o: Q" Qo — Q
Player 2: 7:Q"- Qo — Q

outcome of two

outcome "
} strategies is a play






Mean-payoff games

Mean-payoff game:

positive and negative weights
(encoded in binary) w:F —7

Decision problem:

Decide if there exists a player-1 strategy
to ensure mean-payoff value = 0

Jo - V7 : MP(outcome’™) > 0O

Value problem:

sup inf MP(outcomey™)
a m



Mean-payoff games

Key ingredients:

e identify memory requirement:
infinite vs. finite vs. memoryless

* solve 1-player games (i.e., graphs)

Key arguments for memoryless proof:

» backward induction

« shuffle of plays

» nested memoryless objectives
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Reachability objective:
positive cycles (v = 0)
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Reduction to Reachability Games

-3 ~1 +3
0 +2 —2
q1
—1 —2
Reachability objective: 0 4
positive cycles (v = 0) 19 _3 43
qi1 q3
v=1 +1 0 v=l1
q3) | 92
v=1 v=-3

If player 1 wins - only positive cycles are formed - mean-payoff value > 0

If player 2 wins = only negative cycles are formed - mean-payoff value < 0
(Note: limsup vs. liminf does not matter)



Reduction to Reachability Games

-3 ~1 +3
0 +2 —2
q1
—1 —2
Reachability objective: 2 q4

positive cycles (v = 0) 19 _3 43 1
q1 43 44

v=1 +1 0 v=l1 V=-

qs3 q2

v=1 v=-3

Mean-payoff game < Ensuring positive cycles

Memoryless strategy transfers to finite-memory mean-payoff winning strategy
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Memoryless mean-payoff
winning strategy ?

v
Progress measure: minimum initial credit to stay always positive



Strategy Synthesis

0 -3 3 —1 4 +3 00
QYT e ful

0 +2 —2

Memoryless mean-payoff
winning strategy ?

Choose successor to stay above minimum credit

p Q@ — N minimum credit such that

n
Jo -V -Vn: u(qo) + > w(gi ¢i4+1) >0
i=0

v
Progress measure: minimum initial credit to stay always positive

In g € Qo choose ¢’ such that 1.(q¢) + w(q,q") > u(q)



Strategy Synthesis

0 —3 3 —1 4 +3 o0
NG fub-

NS — .
aﬂ?‘g\)sded\w to stay above minimum credit
T (Q — N minimum credit such that

n
Jo -V -Vn: u(qo) + > w(gi ¢i4+1) >0
i=0

Progress measure: minimum initial credit to stay always positive

In g € Qo choose ¢’ such that 1.(q¢) + w(q,q") > u(q)



Memoryless proofs

Key arguments for memoryless proof:
e backward induction
« shuffle of plays

 nested memoryless objectives



Energy Games

o= 0 -3 3 -1 4 00
1 a2 g1 [ -1
MP = 1 1 +2 1 -1
n—1
Energy: min-value of the prefix. p=—min > w,
(if positive cycle; otherwise o) neN 75
n—1
Mean-payoff: average-value of the cycle. MP = 1im L. 3w
n=oop ¢
1=

x>/




Energy Games

Winning strategy ?



Energy Games

Winning strategy ?

Follow the minimum initial credit !

—






Multi-dimension games

@.@.@ Multiple resources w : Q — Z¢
da q0 db
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same as positive
cycles ?




Multi-dimension games

@.@.@ Multiple resources w : Q — Z¢
da q0 db

same ?

« Energy: initial credit to stay always above (0,0)
« Mean-payoff: MP(w;) > 0 A MP(w3) > 0

same as positive
cycles ?

If player 1 can ensure positive simple cycles,
then energy and mean-payoff are satisfied.

Not the converse !




Multi-dimension games

If player 1 has initial credit to stay always positive (Energy)
then finite-memory strategies are sufficient



Multi-dimension games

If player 1 has initial credit to stay always positive (Energy)
then finite-memory strategies are sufficient

Then o, is winning
and finite memory

Let 0, be winning On each branch

Ly

stop and play L
2
as from L, !

With L,<L,




Multi-energy games

If player 1 has initial credit to stay always positive (Energy)
then finite-memory strategies are sufficient

For player 2 ?



Multi-energy games

For player 2, memoryless strategies are sufficient

e induction on player-2 states

e if Oinitial credit against all memoryless strategies,
then Oinitial credit against all arbitrary strategies.

q q q

A

‘left’ game ‘right’ game
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For player 2, memoryless strategies are sufficient

e induction on player-2 states

e if Oinitial credit against all memoryless strategies,
then Oinitial credit against all arbitrary strategies.

C C,
q q
o/ \:
‘left’ game ‘right’ game

GGy

q

Play is a shuffle of left-game play
and right-game play

Energy is sum of them




Multi-energy games

For player 2, memoryless strategies are sufficient

e induction on player-2 states

e if Oinitial credit against all memoryless strategies,
then Oinitial credit against all arbitrary strategies.

C

q
ez/

‘left” game

kr

Value against
memoryless
strategies

~

S

—

GGy

q

A

Play is a shuffle of

and right-game pl;

Value against
arbitrary
strategies

Energy is sum of them /

In general, we need min(val(py,),val(pr)) < val(shuffle(pr, pr))



Memoryless proofs

Key arguments for memoryless proof:
 backward induction
« shuffle of plays

 nested memoryless objectives
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Multi-energy games

If player 1 has initial credit to stay always positive (Energy)
then finite-memory strategies are sufficient

For player 2, memoryless strategies are sufficient

coNP ?

not necessarily
simple cycle!

e guess a memoryless strategy n for Player 2
e Construct G,

e check in polynomial time that G, contains no cycle
with nonnegative effect in all dimensions



Multi-weighted energy games

Detection of nonnegative cycles — polynomial-time

(—1,1) (1,-1)

(_1a 1)
e Flow constraints using LP
e Divide and conquer algorithm a .

(_1’ 1)
(_17 1)
(17 _1)

(_17 1)

(17_1>



Multi-weighted energy games

Detection of nonnegative cycles — polynomial-time

(—1,1) (1,-1)

(_1a 1)
e Flow constraints using LP
do di1
L1

X3 (—]., 1)

(17_1)

(17_1>



Multi-weighted energy games

Detection of nonnegative cycles = polynomial-time

(—1,1) (1,-1)

. . (_1? 1)
e Flow constraints using LP

. oW o

X3 (_17 1)

To (—1,1) (—1,1)
(17 _1)
Tr1 + T2 = T3

oo

(11 _1)

Not connected !



Multi-weighted energy games

Detection of nonnegative cycles = polynomial-time

(=1,1) (1,-1)
)

—1,
(1,1
e Flow constraints using LP . .
e Divide and conquer algorithm @.@
~1,1

(—1,1)
Mark the edges that belong to some

(pseudo) solution. (1, 1)

Solve the connected subgraphs. @.@



Multi-weighted energy games

Detection of nonnegative cycles = polynomial-time

e Flow constraints using LP

e Divide and conquer algorithm

Mark the edges that belong to some
(pseudo) solution. P

Solve the connected subgraphs. @.@



Multi-dimension games

If player 1 has initial credit to stay always positive (Energy)
then finite-memory strategies are sufficient

For player 2, memoryless strategies are sufficient

Equivalent with mean-payoff games (under finite-memory):

If player 1 wins - positive cycles are formed - mean-payoff value > 0

Otherwise, for all finite-memory strategy of player 1 (with memory M),
player 2 can repeat a negative cycle (in G x M)



Multi-dimension games

Player 1 Energy ‘ MP - liminf ‘ MP - limsup

coNP-complete

Finite memory Player 2 memoryless

Infinite memory




Multi-dimension games

Player 1 Energy ‘ MP - liminf ‘ MP - limsup

coNP-complete

Finite memory Player 2 memoryless

coNP-complete

Infinite memory Pl. 2 memoryless

 Player 2 memoryless (shuffle argument)

 Graph problem in PTIME (LP argument)

 True for MP

min(MP(pr), MP(pr)) < MP(shuffle(pr, pr)) __
» False for MP



Multi-mean-payoff games

The winning region R of player 1 has the following characterization:

Player 1 wins /\W(w@-) > ( from every state in R

if and only if player 1 wins each MP(w;) > 0 from every state in R

ithout leaving R
Proof idea: CIO(1 A 2) = 001 A 02 (without leaving R)




Multi-mean-payoff games

The winning region R of player 1 has the following characterization:

Player 1 wins /\W(w@-) > ( from every state in R

if and only if player 1 wins each MP(w;) > 0 from every state in R

(without leaving R)

Proof idea: LIO(1A2) =001 ATO2

L
Losing for player 1
for single objective
Winning for player 2, with -

memoryless strategy -—

By induction, player 2 is memoryless
in the subgame




Memoryless proofs

Key arguments for memoryless proof:
 backward induction
« shuffle of plays

» nested memoryless objectives



Multi-dimension games

Player 1 Energy ‘ MP - liminf ‘ MP - limsup

coNP-complete

Finite memory Player 2 memoryless

coNP-complete NP n coNP

Infinite memory PI. 2 memoryless | Pl. 2 memoryless




Window games

0
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1
Issues with mean-payoff 0
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e limsup vs. liminf w | /\ o /\_/\*

e limit-behaviour, unbounded delay

e complexity



Window games

0
-1 m
1
Issues with mean-payoff 0
e [imsup vs. liminf V\_/\ /\ / 1\ / 1\
« limit-behaviour, unbounded delay \
e complexity unbounded window

Sliding window of size at most B
At every step, MP > 0 within the window



Window games

Window objective:

from some point on, at every step, MP > 0 within window of B steps

/ \

prefix-independent bounded delay

Implies the mean-payoff condition



Window games

Window objective:

from some point on, at every step, MP > 0 within window of B steps

/ \

prefix-independent bounded delay

Implies the mean-payoff condition

Complexity, Algorithm ?

» like coBiichi objective OLI(X=" > 0) O(V*-E-B-logW)
a_l
min-max cost (for <B steps)

stable set (safety)

\/
attractor & subgame iteration



Window games

Window objective:

from some point on, at every step, MP > 0 within window of B steps

/ \

prefix-independent bounded delay

Implies the mean-payoff condition

Complexity, Algorithm ?
» like coBiichi objective OLI(X=" > 0) O(V*-E-B-logW)

e multi-dimension: EXPTIME-complete



Hyperplane Separation

Multi-dimension mean-payoff (liminf): coNP-complete

Naive algorithm: exponential in number of states

Hyperplane separation: reduction to single-dimension mean-payoff games

—

A= (1,3)
w=(—1,2)

Xowl'=1-(=1)+3-2=5

OO O——0O



Hyperplane Separation

Multi-dimension Single dimension

—

X=(1,3)

QW.Q — QX.WTO




Hyperplane Separation

(1,-3) (—=3,1) (—1,3) (3,—1)
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Hyperplane Separation

(1,-3) (—=3,1) (—1,3) (3,—1)

Y Y
|

Player 1 cannot ensure MP, = 0 for some A

=4

Player 1 loses the multi-dimension game
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Y Y
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Hyperplane Separation

(17_3) (—3, 1)

Y

(-1,3)  (3,-1)

Y

Player 1 wins MP, > 0 for all A O (R*)¢

=4

Player 1 wins the multi-dimension game



Hyperplane Separation

 Multi-dimension mean-payoff (liminf): coNP-complete
 Naive algorithm: exponential in number of states

» Hyperplane separation: reduction to single-dimension mean-payoff games

Player 1 wins MP, > 0 for all A O (R*)¢

=4

Player 1 wins the multi-dimension game

In fact, it is sufficient for player 1 to win for all A O {0,...,(dmNV)d+1}d

M
Fixpoint algorithm: _
Solving O(n9)
- remove states if losing for some A mean-payoff games

- remove attractor (for player 2) of losing states  in O(nihi¥)

O(nzml[ﬁ’ldﬂ)



Conclusion

Multiple dimensions of mean-payoff games
» Reachability game
* Energy game
 Cycle-forming game

Multi-dimension mean-payoff games

Memoryless proofs

Other directions: parity condition, stochasticity, imperfect information
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The end

Thank you !

Questions ?



