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Previous work: probabilistic timed automata

• Probabilistic timed automata (PTA) [GJ95,KNSS02]: timed automata with
(discrete) probabilistic choice over edges.

• PTA conservatively extend:

• (Alur-Dill) timed automata (clock variables, constraints and resets);
• (Segala) probabilistic automata (presence of nondeterministic and

probabilistic choice over transitions).

• Example of PTA:

• System repeatedly attempts to complete a task.
• Each task attempt takes between 1 and 2 time units (nondeterministic

choice).
• A task attempt can be successful or unsuccessful (probabilistic choice).
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Previous work: probabilistic timed automata

• Nondeterminism means that there is no unique probability of a system
event: identify maximum or minimum probability of an event.

Result (maximum probabilistic reachability problem) [KNSS02,LS07]

Given a PTA and a threshold λ ∈ [0, 1], the problem of determining whether the
maximum probability that the PTA reaches a set of final locations greater than λ
is decidable (EXPTIME-complete).

• Region-graph-based construction of a finite-state probabilistic automaton
that is equivalent (w.r.t. time-abstract probabilistic bisimulation) to the
PTA.

• Extend to minimum probabilistic reachability problem, probabilistic model
checking problems (Pctl∗ etc.), max./min. probabilistic/priced properties
etc.

[KNSS02] M. Kwiatkowska et al. “Automatic verification of real-time systems with discrete probability distributions”. In:
TCS 286 (2002), pp. 101–150.

[LS07] F. Laroussinie and J. Sproston. “State explosion in almost-sure probabilistic reachability”. In: IPL 102.6 (2007),
pp. 236–241.



Motivation: probability changing with time

• Probabilities may depend on time: e.g., success of task completion may
increase with the amount of time dedicated to the task attempt.

• Expressing a relationship between probabilities and time in PTAs: split
guards; duplicate locations; distributions over edges have different
probabilities.

• Example:

• As before, task completion
between 1 and 2 time units.

• Assign a higher probability to
task completion when x is in
interval [ 3

2
, 2].

• Note that probabilities remain
constant as time passes when x
is in interval [1, 3

2
], similarly with

[ 3
2
, 2].
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Motivation: probability changing with time

• Probabilities may depend on time: e.g., success of task completion may
increase with the amount of time dedicated to the task attempt.

• Expressing a relationship between probabilities and time in PTAs: split
guards; duplicate locations; distributions over edges have different
probabilities.
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Motivation: probability changing with time

• Alternative to piecewise constant functions: piecewise linear functions.
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Clock-dependent probabilistic timed automata

• A clock-dependent probabilistic timed automaton (cdPTA) comprises:

• Standard PTA components:
• Locations (+ initial location); clocks; invariant conditions.
• “Nails” (the black squares, each with a source location and a guard

condition).
• Edges from nails to locations (with clock resets).

• Distribution templates: functions d : ClockVals→ Dist(Edges) associated
with each nail, describing which distribution over edges to use given the
current clock valuation.

• Piecewise linear clock dependencies: distribution templates described by
(sums of) piecewise linear functions (defined with respect to intervals with
endpoints in Q), one for each clock.

• E.g., for clock valuation v ∈ ClockVals, if v(x) is in interval [1, 2], edge to X
location has probability 7+v(x)

10
.
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Clock-dependent probabilistic timed automata

• Example 1.

A X
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• Maximum probability strategy to reach location X:

• Leave location A when x is equal to 1.
• Probability of reaching location X for this strategy is 1.



Clock-dependent probabilistic timed automata

• Example 2.
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• Maximum probability strategy to reach location X:

• Leave location A when x is equal to 1
2
, then leave location B instantly.

• Probability of reaching location X for this strategy is 1
4
.



Clock-dependent probabilistic timed automata

• Example 3.
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• Maximum probability strategy to reach location X:

• Leave location A when x is equal to 1−
√

3
3

, then leave locations B and C
instantly.

• Probability of reaching location X for this strategy is ≈ 0.19245.



Clock-dependent probabilistic timed automata

• Region graph [AD94] and corner-point abstraction [BBL08]: finite-state
transition systems that can be used for solving reachability/model
checking/optimality etc. problems on (P)TA.

• Obtained by a finite partitioning of the state space, using a time granularity
such that each constant used in the guard/invariant constraints are
multiples of the time granularity.

• E.g., for a (P)TA with guards x ≥ 3
2
, y ≥ 1 and invariants x ≥ 2, y < 5

2
, the

coarsest granularity is 1
2
.

• Rely on fact that choices (of time delays) witnessing the solution of a
problem (w.r.t. reachability/model checking/optimality...) are made at or
arbitrarily close to multiples of the time granularity.

• Difficulty: in cdPTA (even with one clock) this does not occur (previous
example with maximum probability of reaching X location has probability

1−
√

3
3

).

[AD94] R. Alur and D. L. Dill. “A theory of timed automata”. In: TCS 126.2 (1994), pp. 183–235.

[BBL08] P. Bouyer, E. Brinksma, and K. G. Larsen. “Optimal Infinite Scheduling for Multi-Priced Timed Automata”. In:
FMSD 32.1 (2008), pp. 2–23.



Undecidability

Result
The maximal reachability problem is undecidable for cdPTAs with at least 3
clocks.

• Simulate a two-counter machine:

• Encode value of a counter ci using a clock xi :

x1 =
1

2c1
and x2 =

1

2c2
.

• Represent each instruction using a cdPTA module that maintains the counter
encoding: based on [ABKMT16].

• The two-counter machine does not halt if the maximum probability of
reaching target locations in the cdPTA is at least 1

4 .

• Correct simulation of the two-counter machine corresponds to reaching
target locations with probability 1

4
in each module.

• Hence halting corresponds to reaching target locations with probability less
than 1

4
.

[ABKMT16] S. Akshay et al. “Stochastic Timed Games Revisited”. In: MFCS’16. Vol. 58. LIPIcs. Leibniz-Zentrum für
Informatik, 2016, 8:1–8:14.



Undecidability

• Encoding increment instruction for c1.
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• Let δ be the amount of time that elapses in location B.
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Undecidability
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Undecidability

• Encoding increment instruction for c1.
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Undecidability

• Encoding increment instruction for c1.
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Undecidability

• Widget for testing whether δ = 1
2c1+1 .

• Rewrite to δ = 1
2c1+1 + ε, for ε ∈ (− 1

2c1+1 ,
1

2c1+1 ).
• Therefore widget tests whether ε = 0.

• On entry to location D:

x1 = δ
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x3 = 1− 1

2c1 + δ

 , i.e.,
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• Only path to reach X location: has probability 1
2
(x1 + x3)(1− 1

2
(x1 + x3)).

• 1
2
(x1 + x3) equals 1

2
+ ε, 1− 1

2
(x1 + x3) equals 1

2
− ε.

• Multiplying these together obtains 1
4
− ε2, which is maximised (and equals 1

4
)

when ε = 0.



Approximation using the region graph

• Finite-state probabilistic automaton to approximate
maximum/minimum probabilities of reaching final locations?

• Use the region graph, plus the concept of corner.
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Approximation using the region graph

• Region graph (+ corner-points)  finite-state probabilistic automaton.
• States: classically-defined regions.
• Transitions: use valuations corresponding to corner points of regions.

• Simple example:
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Approximation using the region graph
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Approximation using the region graph

• Given cdPTA P with final locations F , the clock-dependent region graph Ak

with time granularity 1
k for k ∈ N:

• Pmax
P (F ) denotes the maximum probability of reaching F in P;

• Pmax
Ak

(F ) denotes the maximum probability of reaching F in Ak .

Result (conservative approximation)

Pmax
P (F ) ≤ Pmax

Ak
(F ) Pmax

A2k
(F ) ≤ Pmax

Ak
(F ) .

• Hence, if the answer to the maximum probabilistic reachability problem is
No for Ak , then it is also No for P.

• Analogous results can be obtained also for minimum probability of reaching
final locations.



Example
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Example

• Maximum probability of reaching location X (obtained by encoding
the clock-dependent region graph in the probabilistic model checking
tool Prism).



Conclusions

• Basic (quantitative) probabilistic verification problems for cdPTA are
undecidable.

• ... but approximation of reachability probabilities is possible with the
clock-dependent region graph.

• Future work:
• Monotone functions.
• Qualitative problems.
• Game-based approximations.
• Approximation up to ε given clock-dependencies of certain forms (e.g.,

piecewise-linear).
• (Simple classes of) hybrid systems (e.g., a robot has a greater chance

of detecting a person in need of rescue the closer it is to the person;
already present in some stochastic hybrid system formalisms).


