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Previous work: probabilistic timed automata

o Probabilistic timed automata (PTA) [GJ95,KNSS02]: timed automata with
(discrete) probabilistic choice over edges.
e PTA conservatively extend:

e (Alur-Dill) timed automata (clock variables, constraints and resets);
o (Segala) probabilistic automata (presence of nondeterministic and
probabilistic choice over transitions).

e Example of PTA:

e System repeatedly attempts to complete a task.
e Each task attempt takes between 1 and 2 time units (nondeterministic

choice).

e A task attempt can be successful or unsuccessful (probabilistic choice).
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Previous work: probabilistic timed automata

o Nondeterminism means that there is no unique probability of a system
event: identify maximum or minimum probability of an event.

Result (maximum probabilistic reachability problem)

Given a PTA and a threshold A € [0, 1], the problem of determining whether the
maximum probability that the PTA reaches a set of final locations greater than A
is decidable (EXPTIME-complete).

e Region-graph-based construction of a finite-state probabilistic automaton
that is equivalent (w.r.t. time-abstract probabilistic bisimulation) to the
PTA.

e Extend to minimum probabilistic reachability problem, probabilistic model
checking problems (PCTL* etc.), max./min. probabilistic/priced properties
etc.

[KNSS02] M. Kwiatkowska et al. “Automatic verification of real-time systems with discrete probability distributions”. In:
TCS 286 (2002), pp. 101-150.

[LS07] F. Laroussinie and J. Sproston. “State explosion in almost-sure probabilistic reachability”. In: /PL 102.6 (2007),
pp. 236-241.



Motivation: probability changing with time

o Probabilities may depend on time: e.g., success of task completion may
increase with the amount of time dedicated to the task attempt.

e Expressing a relationship between probabilities and time in PTAs: split
guards; duplicate locations; distributions over edges have different
probabilities.

e Example:

e As before, task completion
between 1 and 2 time units.

e Assign a higher probability to
task completion when x is in
interval [2,2].

e Note that probabilities remain
constant as time passes when x
is in interval [1, 3], similarly with
3,2




Motivation: probability changing with time

Prob. task completion

Probabilities may depend on time: e.g., success of task completion may
increase with the amount of time dedicated to the task attempt.

Expressing a relationship between probabilities and time in PTAs: split
guards; duplicate locations; distributions over edges have different

probabilities.
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Motivation: probability changing with time

o Alternative to piecewise constant functions: piecewise linear functions.
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Clock-dependent probabilistic timed automata

e A clock-dependent probabilistic timed automaton (cdPTA) comprises:

e Standard PTA components:
® Locations (+ initial location); clocks; invariant conditions.
® “Nails” (the black squares, each with a source location and a guard
condition).
® Edges from nails to locations (with clock resets).
e Distribution templates: functions d : ClockVals — Dist(Edges) associated
with each nail, describing which distribution over edges to use given the
current clock valuation.

o Piecewise linear clock dependencies: distribution templates described by
(sums of) piecewise linear functions (defined with respect to intervals with
endpoints in Q), one for each clock.

e E.g., for clock valuation v € ClockVals, if v(x) is in interval [1, 2], edge to v/

location has probability 7+V(X)
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Clock-dependent probabilistic timed automata

e Example 1.

TN

e Maximum probability strategy to reach location v':

e Leave location A when x is equal to 1.
e Probability of reaching location v* for this strategy is 1.



Clock-dependent probabilistic timed automata

e Example 2.

e Maximum probability strategy to reach location v':

e Leave location A when x is equal to % then leave location B instantly.
e Probability of reaching location v for this strategy is %.



Clock-dependent probabilistic timed automata

e Example 3.
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e Maximum probability strategy to reach location v':

e Leave location A when x is equal to 1 — ? then leave locations B and C

instantly.
e Probability of reaching location v* for this strategy is ~ 0.19245.



Clock-dependent probabilistic timed automata

e Region graph [AD94] and corner-point abstraction [BBLOS]: finite-state
transition systems that can be used for solving reachability/model
checking/optimality etc. problems on (P)TA.

e Obtained by a finite partitioning of the state space, using a time granularity
such that each constant used in the guard/invariant constraints are
multiples of the time granularity.

e E.g., for a (P)TA with guards x > 2, y > 1 and invariants x > 2, y < 2, the

. -1
coarsest granularity is 5.

e Rely on fact that choices (of time delays) witnessing the solution of a
problem (w.r.t. reachability/model checking/optimality...) are made at or
arbitrarily close to multiples of the time granularity.

e Difficulty: in cdPTA (even with one clock) this does not occur (previous

example with maximum probability of reaching v* location has probability
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Undecidability

The maximal reachability problem is undecidable for cdPTAs with at least 3
clocks.

e Simulate a two-counter machine:

e Encode value of a counter ¢; using a clock x;:
1 1
xlzﬁand)Q:sz.
e Represent each instruction using a cdPTA module that maintains the counter
encoding: based on [ABKMT16].

e The two-counter machine does not halt if the maximum probability of
reaching target locations in the cdPTA is at least %.

e Correct simulation of the two-counter machine corresponds to reaching
target locations with probability % in each module.

e Hence halting corresponds to reaching target locations with probability less
than %.

[ABKMT16] S. Akshay et al. “Stochastic Timed Games Revisited”. In: MFCS'16. Vol. 58. LIPlcs. Leibniz-Zentrum fiir
Informatik, 2016, 8:1-8:14.



Undecidability

e Encoding increment instruction for c;.
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o Let § be the amount of time that elapses in location B.



Undecidability

e Encoding increment instruction for c;.
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Undecidability

e Encoding increment instruction for c;.
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Undecidability

e Encoding increment instruction for c;.
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Undecidability

e Encoding increment instruction for c;.
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e For x; to be equal to m% on entry to ¢;, must have § = 261%



Undecidability

e Encoding increment instruction for c;.

xp <1,
x1,x0 <1 x1,x3 <1 1 x2,x3 <1
/Z\ x1 =1 ®0<X1,X3<1 2 /C\ x3 =1 @
i J
\t{ Cal \‘d (al &d (s}
1
2 {x}
x =1,{x} x2 =1, {x2} IR 2 . xo=1,{x2}
o
5 1
L c1+1 "«
L
=1 x1 =0 x1 =0 =1 5
=T e 1 1=" 1 =T
xp = 2%2 Xp = 277+1—21T mod 1 Xp = Ec?-%—l—ﬁ-y‘—émodl xp = 2%2
x3=0 X3:1—2%1 X3:1—2%1+5 x3=0

e For x; to be equal to m% on entry to ¢;, must have § = 261%



Undecidability

e Widget for testing whether § = L.

e Rewrite to § = 2c1+1 +e¢ foree (— 2C1+1, 2511“)
e Therefore widget tests whether € = 0.
(xl =4 ) X1 = ﬁ +e
e On entry to location D: | x> =0 Jie, | x=0
x3=1— 5 +6 X3 = 2c11+1 +e

1— 10a+x3) 1 + x3)

.
...............................................................................

e Only path to reach v location: has probability 1 (xi + x3)(1 — 3 (x1 + x3)).
e I(x1+x3) equals 3 +¢ 1 —1(xi+ x3) equals 3 — €.

e Multiplying these together obtains } — €, which is maximised (and equals })
when ¢ = 0.



Approximation using the region graph

e Finite-state probabilistic automaton to approximate
maximum /minimum probabilities of reaching final locations?

e Use the region graph, plus the concept of corner.
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Approximation using the region graph

e Finite-state probabilistic automaton to approximate
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Approximation using the region graph

e Region graph (+ corner-points) ~~ finite-state probabilistic automaton.

e States: classically-defined regions.
e Transitions: use valuations corresponding to corner points of regions.

e Simple example:
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Approximation using the region graph

e Region graph (+ corner-points) ~~ finite-state probabilistic automaton.

e States: classically-defined regions.
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Approximation using the region graph

e Region graph (+ corner-points) ~~ finite-state probabilistic automaton.

e States: classically-defined regions.
e Transitions: use valuations corresponding to corner points of regions.
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Approximation using the region graph

e Region graph (+ corner-points) ~~ finite-state probabilistic automaton.

e States: classically-defined regions.
e Transitions: use valuations corresponding to corner points of regions.

e Simple example:
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Approximation using the region graph

e Given cdPTA P with final locations F, the clock-dependent region graph Ay
with time granularity  for k € N:

o PB**(F) denotes the maximum probability of reaching F in P;
e P5"(F) denotes the maximum probability of reaching F in Ay.

Result (conservative approximation)

PR(F) SPR(F)  PYN(F) < PR™(F).

e Hence, if the answer to the maximum probabilistic reachability problem is
No for Ay, then it is also NO for P.

o Analogous results can be obtained also for minimum probability of reaching
final locations.
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Example

e Maximum probability of reaching location v (obtained by encoding
the clock-dependent region graph in the probabilistic model checking
tool PRISM).
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Conclusions

e Basic (quantitative) probabilistic verification problems for cdPTA are
undecidable.

o ... but approximation of reachability probabilities is possible with the
clock-dependent region graph.

e Future work:

Monotone functions.

Qualitative problems.

Game-based approximations.

Approximation up to € given clock-dependencies of certain forms (e.g.,
piecewise-linear).

(Simple classes of) hybrid systems (e.g., a robot has a greater chance
of detecting a person in need of rescue the closer it is to the person;
already present in some stochastic hybrid system formalisms).



